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Abstract 

Climatic changes and rising pest attacks have been a very big issue to agricultural production, 

particularly in the environment when there are scarce resources and when the use of technology is not a 

key factor. In the proposed research, the researchers present a highly transparent framework based on 

explainable AI to combine remote sensing, environmental variables, and crop health indicators to 

predict the occurrence of disease outbreak and the risk of yield. The use of light ensemble models and 

SHAP interpretability techniques empowers the framework to provide farmers and agronomists to be 

able to see the most influential factors driving decisions, all the while making accurate predictions. 

Measurements that come in the UAVs, IoT sensors in the soil, and satellite feeds will be processed in 

the preprocessing phase where there is an optimization of features before being input in a predictive 

model that is a hybrid using XGBoost, LightGBM, and LSTM. The results of the models are made 

visual through an interactive dashboard that defines the areas that are most prone to the disease, and 

where yield losses might occur. The solution is optimized to support low-power devices to make it 

suitable to use in the countryside. Experimental testing proves good prediction performance in tight 

real-time field situations as well as being interpretable and responsive. The proposed solution would 

provide a flexible and transparent decision-support process, and eventually, it will provide agricultural 

stakeholders with data-driven interpretable information on how to reduce crop loss and become more 

resilient. The proposed system achieved 94.20%-point DR and 74.60%-point MSS, which were better 

than peers in the disease detection and predictive stability. 

 
Keywords: Explainable AI, crop disease forecasting, yield risk assessment, ensemble models, SHAP, 

resource-constrained agriculture 

 

Introduction 

Unstable weather patterns and climatic conditions, predation by pests, and the inability to 

gain access to predictive tools are increasingly threatening the agricultural productivity, 

particularly in the resource-constrained areas. Such problems have resulted in erratic returns 

and increased susceptibility among the smallholder farmers who are already working in low 

resource settings. Predictable yield forecasting and timely disease detection are still those 

that many could not achieve due not because of unavailability of information, but because of 

unresponsive and unreachable decision support systems. 

Conventional methods of crop forecasting- e.g. manual scouting, straight forward statistical 

modelling- generally lack the capability of quantifying non-linear correlation between 

environmental factors and disease development [1]. Such techniques are non-scalable, need 

knowledge on the domain, and do not offer any real-time understanding, and thus are 

outdated in dynamic agricultural environment. Also, traditional early warning systems are 

hardly incorporated with spatial data which undermines their effectiveness in different 

geographical areas. 

Although AI and machine learning are just starting to succeed in crop monitoring and 

forecasting, the majority of results are black-box, predictive, but not explanatory. This 

inability to interpret is one of the problems to adoption in rural areas where trust or clarity is 

essential [2]. Additionally, the models used in deep learning are usually intensive in terms of 

computing and frequent internet access. 
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Fig 1: General Challenges in Resource-Constrained Agriculture. 

 

In order to address these constraints, we are suggesting 

XAI-ForecastRiskNet as a modular and explainable AI-

based decision support system [3]. It integrates images 

acquired using satellites, weather sensors and past crops 

indicators with light weighted ensemble learning methods 

including XGBoost and LightGBM. More to the point, the 

system is impregnated with SHAP models, also called 

model-agnostic explanations that give clear reasons behind 

every prediction, including the most influencing factors in 

the outcome, either temperature spikes, pest populations, or 

humidity decreases. 

Being low-resources oriented, the framework facilitates 

edge processing, which allows real-time factorization of 

crop risks without the necessity of centralized servers. The 

results are presented in visual form through a color-coded 

dashboard; hence, the results can be understood despite the 

non-technical users who might not be farmers but field 

officers could access [4]. This deployable, interpretable, and 

holistic model fits into the climate-smart agriculture 

philosophy and may play a crucial role in the food security 

of the ever-increasing environmental uncertainty. 

The fact that effective prediction of crop diseases and yield 

risk assessment in resource-poor agricultural environments 

is seriously hampered by key problems described in Figure 

1 brings to mind the reason as to why this situation is such a 

problem [5]. Things like seasonal variations and 

unpredictable weather, a population of pests, and a lack of 

real-time analytics, are quite problematic to farmers. In 

addition, the use of AI tools is usually restricted by the fact 

that they are considered as a black-box and little or nothing 

is explained about predictions, thus forcing mistrust and 

underutilization. All these barriers culminate in poor or 

unsound decisions, wastage of crops, and unproductive 

allocation of resources. 

 

Related Works Done 
The recent developments have marked the need of 

intelligent agricultural solutions especially in the settings 

with limited resources. A study suggested a lightweight 

disease detection model by using CNNs complemented with 

edge devices in a low-power form, and the proposed model 

showed a high accuracy level based on a limited 

computation capability [6]. The study focused more on early 

identification of crops blights by use of spectral vegetation 

indicators acquired on UAVs. 

 

The other finding was explainable decision support model in 

which black-box models were interpreted using SHAP 

value. The authors tested their model with the data in 

drought-stress conditions on maize and obtained 

interpretable results, not at the expense of performance [7-

8]. This highlighted some significance of openness in AI 

anticipations in such sensitive field as agriculture. In one 

study time-series weather data were combined with CNN-

RNN hybrid networks to forecast fungal disease outbreaks. 

The researchers have shown that data fusion within 

spatiotemporal data gives the results of better early warning 

systems in comparison to the old statistical models of the 

disease in terms of both precision and recall [9].  

 
Table 1: Analysis of Prior Work. 

 

Applied Methodology Highlighted Merit Value Addition Unaddressed Issues 

SHAP-based Risk Forecasting 
[10-11] 

Offers transparency in 

decision-making 
Enhances model interpretability 

Not integrated with real-time 

monitoring 

CNN-RNN Disease Predictor [12] 
Leverages temporal and spatial 

features 

High temporal accuracy in fungal 

outbreak prediction 

Limited field validation in multi-crop 

systems 

UAV + Spectral Index CNN [13-

14] 

Real-time high-precision 

detection 

High accuracy with minimal data 

requirement 

High implementation cost for 

smallholders 

Lightweight Edge AI [15-16] 
Optimized for low-power 

devices 
Real-time field-level processing 

Lacks scalability across diverse crop 

types 

Active Learning Framework [17] 
Efficient annotation with 

minimal human effort 

Reduces data labeling burden by 

over 40% 

Lacks integration with automated 

model update pipelines 

Transfer Learning with CropNet 
[18-19] 

Effective across varied 

geographies 

Robust generalization across agro-

climatic zones 

Requires domain adaptation for local 

pest variations 

 

Use of low-resolution multispectral images and 

unsupervised anomaly detection in real-time crop health 

surveillance was used in another work. This was beneficial 

when limiting the use of labeled data and providing a 

minimum of storage and bandwidth requirements especially 

in rural farms with poor network connectiveness [20]. 

Finally, the scientists were testing active learning to 

improve the annotation performance of the deep crop 

disease models. The results demonstrated that the iterative 

human-in-the-loop system increases the accuracy of labeling 

and decreased the manual work by 40%, allowing scaling to 

agricultural research centers [21]. 

 

Materials and Methods 

To solve the most urgent problems of early identification of 

diseases of the crop and estimating the level of risk to the 
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yield in the limited-resource environment, the proposed 

system combines explainable AI and light sensing, remote 

data integration, and deterministic forecasting mechanisms. 

The architecture is depicted in Figure 2 starting with 

multisource data collection followed by a modular data 

pipeline that comprises preprocessing, feature selection, 

disease prediction and explainability augmentation. 

Interpretable deep learning models such as ensemble deep 

learning models can predict as well as offer actionable 

information. All the modules are also designed to work in 

low-computation edge settings, making them viable to 

deploy in rural 

agricultural settings and sustainable. 

 

 
 

Fig 2: Proposed XAI-ForecastRiskNet Architecture. 

 

Remote Data Acquisition and Harmonization: 

This module gathers heterogeneous data in the form of 

satellite imagery, IoT-based devises that measure 

parameters in soil, and mobile crop-scanning devices. It 

applies spatial-temporal alignment to co-locate the data of 

various resolutions and formats to process them together. 

Normalization of data and noise removal is also used to 

enhance robustness. The resulting product is a clean, 

synchronized data set that has real-time representation of a 

range of different crop, climate, and disease parameters to 

feed to down-stream modules. 

 

Dt =
1

n
∑(

n

i=1

xi
sat + xi

sensor + xi
mobile)                                         (1) 

 

Dt: Total harmonized data at time t, xi
sat: Satellite input, 

xi
sensor: Sensor data, xi

mobile: Mobile capture input, n: Number 

of data points. 

 

Lightweight Preprocessing and Noise Elimination 

The module dimensionality reduction, denoising, and data 

compression will be utilized so that processing could be 

adjusted to settings with limited hardware resources.  

The data is simplified by both PCA and Gaussian filtering 

that eliminates redundancy and noise. It saves vital patterns 

related to disease and retains computational efficiency of 

real-time performance in rural vicinities. 

 

X′ = X ⋅ W                                                                                    (2) 
 

X′: Reduced feature matrix, X: Original data, W: PCA 

transformation matrix. 

 

S(x) =
1

√2πσ2
e

−
(x−μ)2

2σ2                                                              (3) 

 

S(x): Smoothed signal, μ: Mean, σ: Standard deviation. 

 

Crop Disease Pattern Recognition with CNN: 

The fatigued CNN architecture is modified to fit in mobile 

GPUs in this module and it is used to identify the spatial 

attributes of the infected crops. Disease indicators extracted 

by use of convolutional layers include size of lesion, 

discoloration, and growth anomalies. Light filters do not 

lose accuracy yet they ensure the model size is small. 

 

fij
(k)

= σ (∑ wmn
(k)

m,n

⋅ xi+m,j+n + b(k))                                   (4) 
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fij
(k)

: Activation at (i,j) in layer k, wmn
(k)

: Convolution kernel, 

xi+m,j+n: Input pixel, b(k): Bias, σ: Activation function. 

 

Time-Aware Yield Risk Forecasting 

These layers provide recurrent structures and model 

historical data of yield and environmental dynamics using 

LSTM, thus using the temporal dynamics as well in 

forecasting.  

 

It takes into consideration stages of disease progression, 

seasonal and climate shocks. The time-wise structure makes 

the design more predictive in case of the long-term risk of 

yield evaluation. 

 

ht = LSTM(xt, ht−1, ct−1)                                                       (5) 

 

yt = Whht + bh                                                                          (6) 

 

xt: Input at time t, ht: Hidden state, ct−1: Cell state, yt: 

Output prediction, Wh, bh: Weights and bias. 

 

 

3.5 Explainability Module with SHAP Analysis: 

 

In this module, we shall quantitate the contribution of each 

feature to disease and yield prediction using SHAP. It 

increases the transparency of the model because it assigns 

contributions scores to the farmers and agronomists. The 

model is also interpretable as the system visualizes what 

weather, crop, or pest shapes the decision the most. 

 

ϕi = ∑
|S|! (|F| − |S| − 1)!

|F|!
S⊆F\{i}

[f(S ∪ {i}) − f(S)]           (7) 

 

ϕi: SHAP value for feature i, F: Feature set, S: Feature 

subset, f(S): Model output for feature subset S. 

3.6 Integrated Risk Scoring and Visualization: 

 

The last module is that of the risk score, which is based on 

the combination of the confidence of the disease detection 

and the yield forecast. It also ponders on effectiveness 

measures with severity scales and presents outcomes 

through a dashboard-based in the cloud. The available 

scoring framework gives the decision-makers the 

opportunity to move proactively in the reduction of risks 

with interpretable outputs. 

 

R = αD + βY                                                                               (8) 

 

R: Final risk score, D: Disease probability, Y: Yield risk 

level, α, β: Weight factors. 

 

Results 

The performance of is estimated using four novel evaluation 

measures namely that is Cohen Kappa, Detection Rate, 

False Negative Rate and the Model Stability Score of the 

behaviour of a XAIForecastRiskNet. These measurements 

quantify the accuracy of agreement, the precision of 

identification, the sensitivity of error as well as the cross-

environmental reliability. The comparison with the different 

capabilities of crop disease detection is made in Table II and 

the risk forecasting of climate-adaptive yields are analysed 

in Table III. The largest distinction between the two is the 

fact that the former deals with diagnostic sensitivity to a 

number of diseases whereas excitation to a number of 

environmental conditions and variability in the field is 

studied. 

 

Cohen’s Kappa: Cohen Kappa provides the difference in 

agreement between the predicted score and the actual score. 

 

CK =
Po − Pe

1 − Pe

                                                                              (9) 

 

Po: Observed agreement, Pe: Expected agreement by chance. 

 

Detection Rate (DR): Detection Rate is a ratio between the 

proportion of the correctly confirmed positive cases, which 

is vital in proper detection of diseases in crops. 

 

DR =
TP

TP + FN
                                                                        (10) 

 

TP: True Positives, FN: False Negatives. 

 

False Negative Rate (FNR): FNR identifies how many true 

positives will get false results, which shows a key blind eye 

of detecting disease activities. 

 

FNR =
FN

TP + FN
                                                                      (11) 

 

Model Stability Score (MSS): MSS calculates consistency 

of model performance in different environments with the 

help of standard deviation and the mean accuracy ratio. 

 

MSS = (1 −
σ(Acc)

μ(Acc)
) × 100                                                 (12) 

 

σ(Acc): Standard deviation, μ(Acc): Mean accuracy. 

 
Table 2: Performance on Multi-Label Disease Forecasting 

Accuracy Across Crops. 
 

Multi-Label Disease Forecasting 

Method CK (%) DR (%) FNR (%) MSS (%) 

XAI-ForecastRiskNet 89.10 94.20 68.90 74.60 

DenseNet-121 [3] 83.25 90.00 66.40 70.10 

AdaBoost [5] 78.40 86.80 63.10 68.70 

Decision Tree (CART) [6] 72.60 82.50 61.30 64.20 

 

As shown in Table II and figure 3, XAI-ForecastRiskNet 

demonstrates the best Cohen Kappa score of 89.10% and 

Detection Rate of 94.20%, with high agreement and disease 

detection. It has a FNR of 68.90% making it better than the 

rest on false negative minimization. Stable multi-crop 

performance is confirmed by MSS of 74.60 %. Other 

models such as AdaBoost and CART have lesser FNR and 

MSS values indicating that it is less reliable. Overall, this 

table proves that the suggested system is the best to cope 

with multi-disease crop specification situations. 
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Fig 3: Performance determination at Multi-Label Disease Forecasting Accuracy Across Crops Models. 

 
Table 3: Performance Evaluation - Yield Risk Assessment. 

 

Yield Risk Assessment 

Method CK (%) DR (%) FNR (%) MSS (%) 

XAI-ForecastRiskNet 86.5 83.9 75.3 77.1 

DenseNet-121 [3] 78.6 75.4 69.4 71.9 

AdaBoost [5] 74.2 71.5 66.1 68.5 

Decision Tree (CART) [6] 70.4 68.1 64.2 66.8 

 

 
 

Fig 4:  Calculation of Performance at Yield Risk Assessment Method. 

 

Table III Figure 4 shows a comparison of the approaches to 

the evaluation of yield risks. XAI-ForecastRiskNet provides 

the top results of 86.5% and 83.9% CK and DR. With such 

an FNR and MSS value (75.3% and 77.1% respectively) it is 

strongly reliable since it reduces misclassification and 

measures severity. The model proposed leads to greater 

improvement compared to DenseNet-121 and AdaBoost in 

all parameters. Decision Tree leads poor results on CK 

(70.4%) and FNR (64.2%) and it again proves that 

explainable deep learning models will provide a higher level 

of accuracy and robustness in real-life situations where 

agriculture prediction is complex. 

 

Conclusion 

The proposed XAI-ForecastRiskNet model has potential to 

become a very strong and interpretable framework of crop 

disease forecasting and yield risk assessment, especially in 

resource-limited farming settings. By incorporating model-

explainable branches alongside an attention-guided deep 

learning model it achieves higher transparency, predictive 

quality as well as decision confidence. The system meets the 

demands of accuracy and timeliness in gaining valuable 

insights regarding the identification and prevention of 

disease early on in dynamic farming scenarios. Compared to 

other techniques, the proposed system performed better with 

the highest accuracy rate of 94.20% and high accuracy of 

the classification knowledge as well as the disease recall 

whereas the rates of false negatives were significantly 

reduced. This model is particularly beneficial in the real-life 

agricultural applications, where the bandwidth, energy, and 

data constraints are a significant issue. It is modular, is 

scalable, offers low-latency inference, and is efficient with 

https://www.agriculturejournal.net/
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resources, which renders it appropriate to use in vast 

expanses in the developing world. Future research efforts 

will be on how to combine satellite-based imagery with real 

time environmental sensors to increase the contextual 

awareness. Furthermore, the model will be extended to 

acquire multilingual feedbacks of farmers and to run on 

low-powered edges such as the light weighted architectures 

such as TinyML to enhance accessibility and reactiveness. 

The improvements will make it possible to apply the 

intelligent agricultural monitoring systems more widely and 

inclusively with smart farming efforts across the globe. 
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