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Abstract

Agricultural robotics is rapidly maturing from isolated prototypes to integrated systems that combine
artificial intelligence (Al), machine vision, and the Internet of Things (IoT). This review synthesizes
recent advances, practical deployments, and research challenges at the intersection of robotics,
perception, and connectivity in farm machinery. We examine design paradigms for autonomous
platforms, sensor suites and vision pipelines for crop/weed/fruit tasks, edge and cloud Al for perception
and planning, 10T architectures for fleet and energy management, human-robot interaction and safety,
and socio-economic aspects including business models and policy. Representative industrial examples
and high-impact demonstrations are discussed to highlight real-world readiness and remaining gaps.
Finally, we propose a research agenda—covering duty-cycle datasets, standardized benchmarks, robust
perception under agricultural conditions, low-power edge Al, and interoperable 10T standards—that
aims to accelerate responsible deployment of robotic systems in diverse farm contexts.
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Introduction

Automation and robotics in agriculture aim to address pressing challenges: labor shortages,
the need for precision to reduce agrochemical use, and sustainability goals requiring higher
resource-use efficiency. Over the last decade, improvements in sensing (high-resolution
RGB, multispectral, hyperspectral cameras), compute (edge GPUs, NPUs), and Al (deep
learning for detection, segmentation, and control) have enabled robots to perform complex
field tasks such as targeted weeding, fruit picking, and autonomous tillage. At the same time,
10T connectivity allows distributed fleets and implements to share state, telemetry, and task
schedules—shifting systems from single-robot tools to orchestrated, data-driven platforms.
Recent reviews summarize the rapid technology diffusion and identify an industry moving
from lab prototypes to commercial deployments.

This review focuses on the integration of Al, machine vision, and 10T in farm machinery—
how these components are combined, what capabilities they unlock, and what technical and
non-technical constraints remain. We consider both stationary (sorting lines, packhouses) and
mobile systems (ground robots, UAVSs), giving emphasis to mobile field robotics where
perception, control, and connectivity interplay strongly.

Architectural paradigms for agricultural robotic systems

Robotic farm systems broadly implement one of three architectural paradigms:

1. Monolithic autonomous machines: single platforms with onboard sensing, perception,
planning, and actuation (e.g., autonomous mowers, laser weeders). These systems
minimize dependency on external connectivity but must carry more compute and energy
resources. Examples include the Carbon Robotics Laser Weeder and OEM autonomous
tractors.

2. Edge-cloud hybrid systems: perception and low-latency control run on edge compute
while higher-level planning, fleet coordination, and model updates are handled in the
cloud. This balances real-time responsiveness with centralized optimization and
learning.
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3. Distributed multi-agent systems: swarms or
cooperative fleets (tractor + implements + small robots
+ drones) that divide labor and communicate via loT
middleware to optimize coverage and energy usage.
Cooperative multi-machine operations are attracting
research interest and early pilots.

Key architectural design decisions depend on task latency,
bandwidth availability in rural areas, energy budgets, and
safety/regulatory constraints.

Perception: machine vision systems and Al pipelines
Sensors and modalities

Machine vision in agriculture uses a mix of sensors:

RGB cameras for color and texture cues (fruit detection,
weed/plant boundaries).

Multispectral/hyperspectral sensors for physiological
and stress detection (NDVI, disease signatures).
Thermal imagers for water stress or animal detection.
LiDAR and stereo vision for 3-D shape, obstacle
avoidance and canopy structure estimation.
Time-of-flight / ultrasonic sensors for short-range range
finding and collision avoidance.

Practical deployments often fuse modalities—e.g., RGB +
NIR + depth—to improve robustness under variable
illumination and occlusion. Sensor selection balances
information needs, weight, power, and cost.

Al for detection, segmentation, and pose estimation

Deep learning has become the dominant approach for object
detection and segmentation in agriculture. Key capabilities
include:

Object detection (Faster-RCNN, YOLO families) for
fruits, weeds, pests, and machinery parts.

Instance and semantic segmentation (Mask R-CNN,
DeepLab) for precise localization required in harvesting
and selective spraying.

Pose estimation and grasp planning for manipulators
(keypoint-based or end-to-end grasp networks), crucial
for reliable harvesting.

Domain adaptation and few-shot learning to handle
varying cultivars, lighting, and growth stages; these
reduce the need for prohibitive labeled datasets.

Performance remains sensitive to occlusions (leaves
obscuring fruit), variable lighting, and high intra-class visual
variation, motivating research into robust training, synthetic
data augmentation, and active learning approaches. Recent
surveys document strong progress but emphasize the gap
between lab accuracy and field robustness.

Real-time constraints and edge Al

Field robots often require real-time perception on power-
and space-constrained platforms. Edge Al strategies include:
Model compression (pruning, quantization) to reduce
model size and inference latency.

Efficient architectures (Mobile Net, Efficient Det, Tiny-
YOLDO) tailored to embedded GPUs/NPUSs.

Pipeline optimization—frame skipping, region-of-
interest cropping, and sensor-triggered capture—to
trade off fidelity for compute savings.
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Advances in low-power accelerators (embedded GPUs,
dedicated NPUs) make higher-accuracy models viable on-
field; yet there is a continuous need to balance accuracy,
latency, and energy.

Control, planning, and manipulation

Motion planning and navigation

Autonomous navigation combines GNSS (RTK for cm-level
accuracy in many precision tasks), visual odometry, LIDAR
SLAM, and IMU fusion. Agricultural fields present unique
challenges: repetitive textures, featureless bare soil, dynamic
obstacles (workers, animals), and challenging GNSS
conditions under tree canopies. Robust systems therefore
fuse multiple modalities and incorporate field-aware path
planners that respect crop geometry and minimize soil
compaction.

Manipulation for harvesting and precision tasks
Manipulation tasks require gentle, adaptable grippers and
compliant control to avoid crop damage. Control approaches
include:

Impedance and force control for safe interaction with
fruit/plant tissue.

Visual servoing—closing the perception-to-actuation
loop with image feedback—to correct for perception
and actuation errors.

Learning-based controllers that map vision to end-
effector commands (end-to-end or hybrid), particularly
for variable fruit poses.

Despite progress, harvest robotics still suffer from cycle
times and damage rates that lag human pickers in many
crops; success has been strongest in high-value, uniform
crops (e.g., strawberries under controlled environments) and
for mechanical thinning/targeted pruning tasks.

10T and systems integration: connectivity, data, and fleet
management

10T architectures for farm machinery

10T enables telemetry, remote monitoring, OTA model
updates, and fleet orchestration. Architectures typically
include:

e Device layer: sensors and actuators with local
controllers and edge compute.
e Communication layer: LoRaWAN, NB-loT,

LTE/4AG/5G, or Wi-Fi depending on bandwidth and
latency needs. Low-bandwidth options suit periodic
telemetry; higher bandwidth links or mobile gateways
support offloading of rich sensor data (e.g., images) to
the cloud.

Cloud services: data lakes, model training, fleet
dashboards, and command-and-control APIs.
Orchestration layer: scheduling, task assignment, and
energy-aware routing for multiple machines.

Challenges include rural connectivity gaps, heterogeneous
device ecosystems, and cybersecurity/safety concerns.
Edge-cloud co-design (local autonomy with cloud
coordination) mitigates bandwidth limits while enabling
centralized optimization.

Data pipelines, digital twins and predictive maintenance
10T telemetry enables digital twins—virtual models of
machines and fields—that support simulation, what-if
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planning, and predictive maintenance (anomaly detection on
vibration, motor current, battery metrics). Predictive models
reduce downtime and optimize service scheduling, which is
especially important where service centers are distant.

Standards, interoperability and data governance
Interoperability standards (similar to 1SOBUS for
implements) are emerging as critical for multi-vendor fleets.
Data ownership, privacy, and policies around agricultural
data sharing remain active topics—particularly given value
in crop vyield forecasting, input optimization, and
traceability. Recent reviews emphasize the need for open
interfaces and clear governance mechanisms to foster trust
and wider adoption.

Real-world deployments and industrial examples

Several high-impact commercial demonstrations in recent
years illustrate technological maturity and practical
tradeoffs:

Laser Weeder (Carbon Robotics): An Al-driven,
GPU-backed tractor-pulled unit that identifies and
removes weeds at scale using lasers—demonstrates
extreme processing needs and safety concerns
associated with high-power actuation in the field. This
system highlights the role of cloud/edge GPU farms for
model training and high throughput inference.

OEM autonomy and retrofit kits (e.g., Deere): Major
manufacturers are introducing autonomous tractors and
retrofit autonomy kits that combine multi-camera
sensing, RTK GNSS, and centralized fleet
management—showing that large-scale industry is
embracing autonomy for commercial operations.
Startups & diversified platforms: From small
weeding robots to multi-purpose platforms for mowing,
spraying, and surveillance, a vibrant startup ecosystem
reveals varied business models—robot-as-a-service,
implement retrofit, and licensed autonomy stacks.
Industry reports note continued investment growth
despite macroeconomic headwinds.

These deployments underscore practical constraints—capital
expense, safety/regulatory compliance (e.g., lasers, failsafe
autonomy levels), and the need for reliable service/support
models.

Human-robot interaction, safety, and socio-economic
considerations

Safety and regulatory frameworks

Field robots operate near humans and livestock; safety
requires redundant sensing, predictable behavior, emergency
stop mechanisms, and rigorous validation. Regulatory
frameworks for autonomous vehicles have begun to extend
into off-road domains, but many jurisdictions lack clear
standards for farm robots; this creates uncertainty for
commercial adoption.

Labor, skills, and adoption pathways

While robotics can alleviate labor shortages, adoption
pathways must consider worker reskilling—farm
technicians will need skills in robotics maintenance, data
management, and safety protocols. Business models such as
Custom Hiring Centers (CHCs), robot-as-a-service, or
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cooperatives can lower farmer capital barriers and improve
utilization rates for expensive robotic assets.

Ethical and environmental concerns

Automation decisions affect rural employment and land
management. Careful evaluation of social impact, equitable
access to technology, and environmental tradeoffs (e.g.,
energy use, embodied emissions) must accompany technical
development.

Key technical challenges and research opportunities

We identify major areas where research would yield high
impact:

1. Robust perception under real-world agricultural
conditions: long-tail cases (dense occlusion, rain/dust,
lighting extremes) remain a major failure mode.
Research in sensor fusion, domain adaptation, and self-
supervised learning can reduce labeling needs and
increase robustness.

Standardized datasets and benchmarks: the
community needs representative, annotated datasets
covering multiple crops, growth stages, and
environmental conditions to benchmark detection,
segmentation, and manipulation. Public benchmarks
will drive reproducibility and accelerate progress.
Low-power, low-latency edge Al: optimized model
architectures, compiler toolchains, and hardware-
software co-design for embedded platforms that balance
inference accuracy with energy and thermal budgets.
Multi-agent coordination and task allocation:
scalable algorithms for heterogeneous fleets that can
share perception, coordinate coverage, and dynamically
reassign tasks considering energy and operational
constraints.

Interoperable 10T and data governance: open APIs
and standardized telemetry schemas to enable third-
party tools, avoid vendor lock-in, and enable secure,
privacy-preserving data sharing.

Field-ready manipulation and soft robotics:
compliant, adaptive end-effectors and tactile sensing for
delicate harvesting tasks, with control strategies that
generalize across fruit geometries and attachment
modes.

Validation  frameworks and safety cases:
standardized testbeds and simulation-to-real validation
pipelines for proving safety in mixed human-robot
workspaces.

Roadmap and recommendations

For researchers, industry, and policymakers we recommend:
Short term (1-2 years): Establish open datasets and
shared evaluation protocols; pilot edge-cloud setups in
cooperative farms; fund workforce training programs
for robot maintenance.

Medium term (3-5 years): Develop fleet orchestration
tools and interoperable 10T standards; deploy predictive
maintenance and digital-twin pilots in commercial
settings; support regulatory clarity around safety and
certification.

Long term (>5 years): Mature modular robotic
platforms with swappable payloads; mainstream robotic
services via CHCs and coop models; integrate robotics
outcomes into  sustainability  policy (reduced
agrochemical use, improved yields, traceability).
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Table 1: Comparison of sensing modalities for common agricultural perception tasks

. . Lo Typical
Sensing Modality Strengths Limitations Cost (USD)
Low cost, easy integration, high spatial Sensitive to lighting variation, limited
RGB Cameras resolution; suitable for fruit detection and weed [spectral information, poor performance under, 100-500
mapping shadows
Enables vegetation index computation (NDVI, Moderate cost; limited spectral range
Multispectral Cameras GNDVI); good for disease detection and crop |(typically 4-6 bands); sensitive to calibration| 1,000-5,000
health monitoring errors
Hvperspectral Sensors High spectral resolution enables early disease Expensive, data-intensive, requires expert 10,000-
YPersp detection, nutrient stress monitoring calibration and analysis 50,000
Thermal Infrared Cameras Useful for |rr|gat|or_1 monitoring, canopy Lov_ver spatial resolgtlon; _mfluen_ced t_)y 2,000-10,000
temperature mapping, stress detection ambient temperature; requires calibration
LiDAR (Light Detection and Accurate 3D structure and canopy mapping; High cost, heavy payload, data processing
- - ; . - 5,000-25,000
Ranging) robust in low light intensive
Time-of-Flight (ToF) Sensors / Low-cost 3D sensing, effective for fruit Short range (<5 m); affected by sunlight and
o L ; 300-2,000
Depth Cameras localization and robot navigation reflective surfaces
Ultrasonic Sensors Simple, robust f(_)r obsta_cle c_ietectlon, canopy | Low res_olutlon, w!de begm dlverggnce, not 50-300
height estimation suitable for fine object detection
Radar Sensors (mmWave, Works in all weather/light conditions, good for | Coarse resolution, requires complex signal
. - - - 200-2,000
UWB) obstacle avoidance and terrain sensing processing
Spectroradiometers Precise spe_:ctral data for bloc_hgmlg:al analysis, | Very high cost, unsuitable for mobile field 15,000-
disease stress quantification robots 60,000
Combination (Sensor Fusion) Integrates RGB + LiDAR + multispectral for Increased complexity, synchronization 5,000-
enhanced robustness and accuracy challenges, higher total cost 50,000+

Table 2: Representative robotic applications, maturity level, key enabling technologies, and adoption challenges

Robotic System /
Application

Primary Function

Maturity Level

Key Enabling Technologies

Major Adoption Challenges

LaserWeeding (Carbon

Precision weed removal

Deep learning-based weed

Safety regulations for lasers,

Blue River LettuceBot

spraying of lettuce

(John Deere)

. A . Commercial | recognition, high-power CO: laser | high capital cost, field safety
Robotics, USA) using laser targeting actuation, autonomous navigation certification
. Machine vision, CNN-based plant Integration with existing
Targeted herbicide . e . - s "
See & Spray (John Deere) aoplication Commercial classification, real-time actuation |sprayers, lighting variation, data
PP control labeling requirements
Naio Oz and Dino (Naio | Autonomous mechanical . RTK-GPS navigation, machine High purch_a§e cost, limited crop
. - . Commercial - o adaptability, maintenance
Technologies, France) weeding and hoeing vision, loT-based fleet monitoring training
Thorvald Il (University of Modular m_ultl-purpo_se Prototype / Early |ROS-based control, LIDAR + RGB| . Lack of s_tqndal_rd|_zat|on,
; robot (weeding, spraying, - - . interoperability, limited local
Lincoln, UK) . Commercial fusion, modular chassis
phenotyping) support
Fendt Xaver Swarm . . I Data synchronization,
Robots (AGCO, Swarm-based s_eecyng and Prototype;/ Field I_oT comn_]un_lcatlon, GNSS scalability, connectivity in rural
crop monitoring Testing guidance, distributed Al control
Germany) areas
Robocrop Vision Vision-based precision . High-speed image processing, color|Limited to row crops, sensitivity
: . Commercial . . .
Guidance (Garford, UK) hoeing segmentation, adaptive control to canopy occlusion
Smart spot-spraving and Al-based image segmentation, GPS| Cost vs. savings balance, weed
Ecorobotix ARA pot-spraying Commercial guidance, low-volume precision misclassification in dense
weed targeting dosi
osing canopy
AgBo_t 11 (Queensland Auto_nomous_ scouting, Research / SLAM navigation, multi-sensor Ruggedization, regulatory
University of Technology,|  soil sampling, and - - approval for autonomous
: - Prototype fusion, Al-based decision support b
Australia) weeding mobility
Harvest CROO Robotics | Automated strawberry | Prototype / Pilot | 3D vision, robotic grasping, soft Handling delicacy, speed,
(USA) harvesting Commercial robotics actuators variability in fruit position
Robotic strawberry pickerl  Commercial 3D stereo vision, deep learning Throughput limitations,
Octinion Rubion - myp - fruit detection, pneumatic soft mechanical complexity, cost
with soft gripper (Limited) -
actuation recovery
AgXeed AgBot Autonomous tr_actor _ Al-driven route planning, LiDAR Legal framework for driverless
platform for field Commercial safety systems, cloud-based - -
(Netherlands) . : operation, high upfront cost
operations telematics
FarmDroid FD20 Solar-powered seeding Commercial GNSS-based navigation, energy- | Dependence on solar energy,
(Denmark) and weeding robot efficient embedded control limited payload capacity
Selective thinning and Commercial High-speed image classification,

precision nozzle control

Cost of maintenance, adaptation
to other crops

SwagBot (Australia)

Pasture monitoring and
autonomous livestock

management

Prototype

Vision + LiDAR navigation, IoT-
based animal tracking

Battery endurance, terrain
adaptability, connectivity

constraints
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Conclusions

Integration of Al, machine vision, and IoT is propelling
agricultural robotics from demonstrations to real impact in
the field. Technical advances across perception, planning,
manipulation, and systems integration have enabled novel
capabilities—precision weeding, autonomous harvesting,
and fleet orchestration—while also exposing challenges in
robustness, energy, connectivity, and safety. Addressing
these challenges will require multidisciplinary collaboration
across robotics, agronomy, data governance, and policy.
With careful attention to social and environmental tradeoffs
and by building interoperable, resilient systems, agricultural.
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