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Abstract 

Agricultural robotics is rapidly maturing from isolated prototypes to integrated systems that combine 

artificial intelligence (AI), machine vision, and the Internet of Things (IoT). This review synthesizes 

recent advances, practical deployments, and research challenges at the intersection of robotics, 

perception, and connectivity in farm machinery. We examine design paradigms for autonomous 

platforms, sensor suites and vision pipelines for crop/weed/fruit tasks, edge and cloud AI for perception 

and planning, IoT architectures for fleet and energy management, human-robot interaction and safety, 

and socio-economic aspects including business models and policy. Representative industrial examples 

and high-impact demonstrations are discussed to highlight real-world readiness and remaining gaps. 

Finally, we propose a research agenda—covering duty-cycle datasets, standardized benchmarks, robust 

perception under agricultural conditions, low-power edge AI, and interoperable IoT standards—that 

aims to accelerate responsible deployment of robotic systems in diverse farm contexts. 
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Introduction 

Automation and robotics in agriculture aim to address pressing challenges: labor shortages, 

the need for precision to reduce agrochemical use, and sustainability goals requiring higher 

resource-use efficiency. Over the last decade, improvements in sensing (high-resolution 

RGB, multispectral, hyperspectral cameras), compute (edge GPUs, NPUs), and AI (deep 

learning for detection, segmentation, and control) have enabled robots to perform complex 

field tasks such as targeted weeding, fruit picking, and autonomous tillage. At the same time, 

IoT connectivity allows distributed fleets and implements to share state, telemetry, and task 

schedules—shifting systems from single-robot tools to orchestrated, data-driven platforms. 

Recent reviews summarize the rapid technology diffusion and identify an industry moving 

from lab prototypes to commercial deployments.  

This review focuses on the integration of AI, machine vision, and IoT in farm machinery—

how these components are combined, what capabilities they unlock, and what technical and 

non-technical constraints remain. We consider both stationary (sorting lines, packhouses) and 

mobile systems (ground robots, UAVs), giving emphasis to mobile field robotics where 

perception, control, and connectivity interplay strongly. 

 

Architectural paradigms for agricultural robotic systems 

Robotic farm systems broadly implement one of three architectural paradigms: 

1. Monolithic autonomous machines: single platforms with onboard sensing, perception, 

planning, and actuation (e.g., autonomous mowers, laser weeders). These systems 

minimize dependency on external connectivity but must carry more compute and energy 

resources. Examples include the Carbon Robotics Laser Weeder and OEM autonomous 

tractors.  

2. Edge-cloud hybrid systems: perception and low-latency control run on edge compute 

while higher-level planning, fleet coordination, and model updates are handled in the 

cloud. This balances real-time responsiveness with centralized optimization and 

learning.
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3. Distributed multi-agent systems: swarms or 

cooperative fleets (tractor + implements + small robots 

+ drones) that divide labor and communicate via IoT 

middleware to optimize coverage and energy usage. 

Cooperative multi-machine operations are attracting 

research interest and early pilots.  

 

Key architectural design decisions depend on task latency, 

bandwidth availability in rural areas, energy budgets, and 

safety/regulatory constraints. 

 

Perception: machine vision systems and AI pipelines 

Sensors and modalities 

Machine vision in agriculture uses a mix of sensors: 

 RGB cameras for color and texture cues (fruit detection, 

weed/plant boundaries). 

 Multispectral/hyperspectral sensors for physiological 

and stress detection (NDVI, disease signatures). 

 Thermal imagers for water stress or animal detection. 

 LiDAR and stereo vision for 3-D shape, obstacle 

avoidance and canopy structure estimation. 

 Time-of-flight / ultrasonic sensors for short-range range 

finding and collision avoidance. 

 

Practical deployments often fuse modalities—e.g., RGB + 

NIR + depth—to improve robustness under variable 

illumination and occlusion. Sensor selection balances 

information needs, weight, power, and cost. 

 

AI for detection, segmentation, and pose estimation 

Deep learning has become the dominant approach for object 

detection and segmentation in agriculture. Key capabilities 

include: 

 Object detection (Faster-RCNN, YOLO families) for 

fruits, weeds, pests, and machinery parts. 

 Instance and semantic segmentation (Mask R-CNN, 

DeepLab) for precise localization required in harvesting 

and selective spraying. 

 Pose estimation and grasp planning for manipulators 

(keypoint-based or end-to-end grasp networks), crucial 

for reliable harvesting. 

 Domain adaptation and few-shot learning to handle 

varying cultivars, lighting, and growth stages; these 

reduce the need for prohibitive labeled datasets. 

 

Performance remains sensitive to occlusions (leaves 

obscuring fruit), variable lighting, and high intra-class visual 

variation, motivating research into robust training, synthetic 

data augmentation, and active learning approaches. Recent 

surveys document strong progress but emphasize the gap 

between lab accuracy and field robustness.  

 

Real-time constraints and edge AI 

Field robots often require real-time perception on power- 

and space-constrained platforms. Edge AI strategies include: 

 Model compression (pruning, quantization) to reduce 

model size and inference latency. 

 Efficient architectures (Mobile Net, Efficient Det, Tiny-

YOLO) tailored to embedded GPUs/NPUs. 

 Pipeline optimization—frame skipping, region-of-

interest cropping, and sensor-triggered capture—to 

trade off fidelity for compute savings. 

 

Advances in low-power accelerators (embedded GPUs, 

dedicated NPUs) make higher-accuracy models viable on-

field; yet there is a continuous need to balance accuracy, 

latency, and energy. 

 

Control, planning, and manipulation 

Motion planning and navigation 

Autonomous navigation combines GNSS (RTK for cm-level 

accuracy in many precision tasks), visual odometry, LiDAR 

SLAM, and IMU fusion. Agricultural fields present unique 

challenges: repetitive textures, featureless bare soil, dynamic 

obstacles (workers, animals), and challenging GNSS 

conditions under tree canopies. Robust systems therefore 

fuse multiple modalities and incorporate field-aware path 

planners that respect crop geometry and minimize soil 

compaction. 

 

Manipulation for harvesting and precision tasks 

Manipulation tasks require gentle, adaptable grippers and 

compliant control to avoid crop damage. Control approaches 

include: 

 Impedance and force control for safe interaction with 

fruit/plant tissue. 

 Visual servoing—closing the perception-to-actuation 

loop with image feedback—to correct for perception 

and actuation errors. 

 Learning-based controllers that map vision to end-

effector commands (end-to-end or hybrid), particularly 

for variable fruit poses. 

 

Despite progress, harvest robotics still suffer from cycle 

times and damage rates that lag human pickers in many 

crops; success has been strongest in high-value, uniform 

crops (e.g., strawberries under controlled environments) and 

for mechanical thinning/targeted pruning tasks. 

 

IoT and systems integration: connectivity, data, and fleet 

management 

IoT architectures for farm machinery 

IoT enables telemetry, remote monitoring, OTA model 

updates, and fleet orchestration. Architectures typically 

include: 

 Device layer: sensors and actuators with local 

controllers and edge compute. 

 Communication layer: LoRaWAN, NB-IoT, 

LTE/4G/5G, or Wi-Fi depending on bandwidth and 

latency needs. Low-bandwidth options suit periodic 

telemetry; higher bandwidth links or mobile gateways 

support offloading of rich sensor data (e.g., images) to 

the cloud. 

 Cloud services: data lakes, model training, fleet 

dashboards, and command-and-control APIs. 

 Orchestration layer: scheduling, task assignment, and 

energy-aware routing for multiple machines. 

 

Challenges include rural connectivity gaps, heterogeneous 

device ecosystems, and cybersecurity/safety concerns. 

Edge-cloud co-design (local autonomy with cloud 

coordination) mitigates bandwidth limits while enabling 

centralized optimization.  

 

Data pipelines, digital twins and predictive maintenance 

IoT telemetry enables digital twins—virtual models of 

machines and fields—that support simulation, what-if 
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planning, and predictive maintenance (anomaly detection on 

vibration, motor current, battery metrics). Predictive models 

reduce downtime and optimize service scheduling, which is 

especially important where service centers are distant. 

 

Standards, interoperability and data governance 

Interoperability standards (similar to ISOBUS for 

implements) are emerging as critical for multi-vendor fleets. 

Data ownership, privacy, and policies around agricultural 

data sharing remain active topics—particularly given value 

in crop yield forecasting, input optimization, and 

traceability. Recent reviews emphasize the need for open 

interfaces and clear governance mechanisms to foster trust 

and wider adoption.  

 

Real-world deployments and industrial examples 

Several high-impact commercial demonstrations in recent 

years illustrate technological maturity and practical 

tradeoffs: 

 Laser Weeder (Carbon Robotics): An AI-driven, 

GPU-backed tractor-pulled unit that identifies and 

removes weeds at scale using lasers—demonstrates 

extreme processing needs and safety concerns 

associated with high-power actuation in the field. This 

system highlights the role of cloud/edge GPU farms for 

model training and high throughput inference.  

 OEM autonomy and retrofit kits (e.g., Deere): Major 

manufacturers are introducing autonomous tractors and 

retrofit autonomy kits that combine multi-camera 

sensing, RTK GNSS, and centralized fleet 

management—showing that large-scale industry is 

embracing autonomy for commercial operations.  

 Startups & diversified platforms: From small 

weeding robots to multi-purpose platforms for mowing, 

spraying, and surveillance, a vibrant startup ecosystem 

reveals varied business models—robot-as-a-service, 

implement retrofit, and licensed autonomy stacks. 

Industry reports note continued investment growth 

despite macroeconomic headwinds.  

 

These deployments underscore practical constraints—capital 

expense, safety/regulatory compliance (e.g., lasers, failsafe 

autonomy levels), and the need for reliable service/support 

models. 

 

Human-robot interaction, safety, and socio-economic 

considerations 

Safety and regulatory frameworks 

Field robots operate near humans and livestock; safety 

requires redundant sensing, predictable behavior, emergency 

stop mechanisms, and rigorous validation. Regulatory 

frameworks for autonomous vehicles have begun to extend 

into off-road domains, but many jurisdictions lack clear 

standards for farm robots; this creates uncertainty for 

commercial adoption. 

 

Labor, skills, and adoption pathways 

While robotics can alleviate labor shortages, adoption 

pathways must consider worker reskilling—farm 

technicians will need skills in robotics maintenance, data 

management, and safety protocols. Business models such as 

Custom Hiring Centers (CHCs), robot-as-a-service, or 

cooperatives can lower farmer capital barriers and improve 

utilization rates for expensive robotic assets. 

Ethical and environmental concerns 

Automation decisions affect rural employment and land 

management. Careful evaluation of social impact, equitable 

access to technology, and environmental tradeoffs (e.g., 

energy use, embodied emissions) must accompany technical 

development. 

 

Key technical challenges and research opportunities 

We identify major areas where research would yield high 

impact: 

1. Robust perception under real-world agricultural 

conditions: long-tail cases (dense occlusion, rain/dust, 

lighting extremes) remain a major failure mode. 

Research in sensor fusion, domain adaptation, and self-

supervised learning can reduce labeling needs and 

increase robustness.  

2. Standardized datasets and benchmarks: the 

community needs representative, annotated datasets 

covering multiple crops, growth stages, and 

environmental conditions to benchmark detection, 

segmentation, and manipulation. Public benchmarks 

will drive reproducibility and accelerate progress. 

3. Low-power, low-latency edge AI: optimized model 

architectures, compiler toolchains, and hardware-

software co-design for embedded platforms that balance 

inference accuracy with energy and thermal budgets. 

4. Multi-agent coordination and task allocation: 

scalable algorithms for heterogeneous fleets that can 

share perception, coordinate coverage, and dynamically 

reassign tasks considering energy and operational 

constraints. 

5. Interoperable IoT and data governance: open APIs 

and standardized telemetry schemas to enable third-

party tools, avoid vendor lock-in, and enable secure, 

privacy-preserving data sharing. 

6. Field-ready manipulation and soft robotics: 
compliant, adaptive end-effectors and tactile sensing for 

delicate harvesting tasks, with control strategies that 

generalize across fruit geometries and attachment 

modes. 

7. Validation frameworks and safety cases: 
standardized testbeds and simulation-to-real validation 

pipelines for proving safety in mixed human-robot 

workspaces. 

 

Roadmap and recommendations 

For researchers, industry, and policymakers we recommend: 

 Short term (1-2 years): Establish open datasets and 

shared evaluation protocols; pilot edge-cloud setups in 

cooperative farms; fund workforce training programs 

for robot maintenance. 

 Medium term (3-5 years): Develop fleet orchestration 

tools and interoperable IoT standards; deploy predictive 

maintenance and digital-twin pilots in commercial 

settings; support regulatory clarity around safety and 

certification. 

 Long term (>5 years): Mature modular robotic 

platforms with swappable payloads; mainstream robotic 

services via CHCs and coop models; integrate robotics 

outcomes into sustainability policy (reduced 

agrochemical use, improved yields, traceability). 
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Table 1: Comparison of sensing modalities for common agricultural perception tasks 

 

Sensing Modality Strengths Limitations 
Typical 

Cost (USD) 

RGB Cameras 

Low cost, easy integration, high spatial 

resolution; suitable for fruit detection and weed 

mapping 

Sensitive to lighting variation, limited 

spectral information, poor performance under 

shadows 

100-500 

Multispectral Cameras 

Enables vegetation index computation (NDVI, 

GNDVI); good for disease detection and crop 

health monitoring 

Moderate cost; limited spectral range 

(typically 4-6 bands); sensitive to calibration 

errors 

1,000-5,000 

Hyperspectral Sensors 
High spectral resolution enables early disease 

detection, nutrient stress monitoring 

Expensive, data-intensive, requires expert 

calibration and analysis 

10,000-

50,000 

Thermal Infrared Cameras 
Useful for irrigation monitoring, canopy 

temperature mapping, stress detection 

Lower spatial resolution; influenced by 

ambient temperature; requires calibration 
2,000-10,000 

LiDAR (Light Detection and 

Ranging) 

Accurate 3D structure and canopy mapping; 

robust in low light 

High cost, heavy payload, data processing 

intensive 
5,000-25,000 

Time-of-Flight (ToF) Sensors / 

Depth Cameras 

Low-cost 3D sensing, effective for fruit 

localization and robot navigation 

Short range (<5 m); affected by sunlight and 

reflective surfaces 
300-2,000 

Ultrasonic Sensors 
Simple, robust for obstacle detection, canopy 

height estimation 

Low resolution, wide beam divergence, not 

suitable for fine object detection 
50-300 

Radar Sensors (mmWave, 

UWB) 

Works in all weather/light conditions, good for 

obstacle avoidance and terrain sensing 

Coarse resolution, requires complex signal 

processing 
200-2,000 

Spectroradiometers 
Precise spectral data for biochemical analysis, 

disease stress quantification 

Very high cost, unsuitable for mobile field 

robots 

15,000-

60,000 

Combination (Sensor Fusion) 
Integrates RGB + LiDAR + multispectral for 

enhanced robustness and accuracy 

Increased complexity, synchronization 

challenges, higher total cost 

5,000-

50,000+ 

 
Table 2: Representative robotic applications, maturity level, key enabling technologies, and adoption challenges  

 

Robotic System / 

Application 
Primary Function Maturity Level Key Enabling Technologies Major Adoption Challenges 

LaserWeeding (Carbon 

Robotics, USA) 

Precision weed removal 

using laser targeting 
Commercial 

Deep learning-based weed 

recognition, high-power CO₂ laser 

actuation, autonomous navigation 

Safety regulations for lasers, 

high capital cost, field safety 

certification 

See & Spray (John Deere) 
Targeted herbicide 

application 
Commercial 

Machine vision, CNN-based plant 

classification, real-time actuation 

control 

Integration with existing 

sprayers, lighting variation, data 

labeling requirements 

Naïo Oz and Dino (Naïo 

Technologies, France) 

Autonomous mechanical 

weeding and hoeing 
Commercial 

RTK-GPS navigation, machine 

vision, IoT-based fleet monitoring 

High purchase cost, limited crop 

adaptability, maintenance 

training 

Thorvald II (University of 

Lincoln, UK) 

Modular multi-purpose 

robot (weeding, spraying, 

phenotyping) 

Prototype / Early 

Commercial 

ROS-based control, LiDAR + RGB 

fusion, modular chassis 

Lack of standardization, 

interoperability, limited local 

support 

Fendt Xaver Swarm 

Robots (AGCO, 

Germany) 

Swarm-based seeding and 

crop monitoring 

Prototype / Field 

Testing 

IoT communication, GNSS 

guidance, distributed AI control 

Data synchronization, 

scalability, connectivity in rural 

areas 

Robocrop Vision 

Guidance (Garford, UK) 

Vision-based precision 

hoeing 
Commercial 

High-speed image processing, color 

segmentation, adaptive control 

Limited to row crops, sensitivity 

to canopy occlusion 

Ecorobotix ARA 
Smart spot-spraying and 

weed targeting 
Commercial 

AI-based image segmentation, GPS 

guidance, low-volume precision 

dosing 

Cost vs. savings balance, weed 

misclassification in dense 

canopy 

AgBot II (Queensland 

University of Technology, 

Australia) 

Autonomous scouting, 

soil sampling, and 

weeding 

Research / 

Prototype 

SLAM navigation, multi-sensor 

fusion, AI-based decision support 

Ruggedization, regulatory 

approval for autonomous 

mobility 

Harvest CROO Robotics 

(USA) 

Automated strawberry 

harvesting 

Prototype / Pilot 

Commercial 

3D vision, robotic grasping, soft 

robotics actuators 

Handling delicacy, speed, 

variability in fruit position 

Octinion Rubion 
Robotic strawberry picker 

with soft gripper 

Commercial 

(Limited) 

3D stereo vision, deep learning 

fruit detection, pneumatic soft 

actuation 

Throughput limitations, 

mechanical complexity, cost 

recovery 

AgXeed AgBot 

(Netherlands) 

Autonomous tractor 

platform for field 

operations 

Commercial 

AI-driven route planning, LiDAR 

safety systems, cloud-based 

telematics 

Legal framework for driverless 

operation, high upfront cost 

FarmDroid FD20 

(Denmark) 

Solar-powered seeding 

and weeding robot 
Commercial 

GNSS-based navigation, energy-

efficient embedded control 

Dependence on solar energy, 

limited payload capacity 

Blue River LettuceBot 
Selective thinning and 

spraying of lettuce 

Commercial 

(John Deere) 

High-speed image classification, 

precision nozzle control 

Cost of maintenance, adaptation 

to other crops 

SwagBot (Australia) 

Pasture monitoring and 

autonomous livestock 

management 

Prototype 
Vision + LiDAR navigation, IoT-

based animal tracking 

Battery endurance, terrain 

adaptability, connectivity 

constraints 
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Conclusions 

Integration of AI, machine vision, and IoT is propelling 

agricultural robotics from demonstrations to real impact in 

the field. Technical advances across perception, planning, 

manipulation, and systems integration have enabled novel 

capabilities—precision weeding, autonomous harvesting, 

and fleet orchestration—while also exposing challenges in 

robustness, energy, connectivity, and safety. Addressing 

these challenges will require multidisciplinary collaboration 

across robotics, agronomy, data governance, and policy. 

With careful attention to social and environmental tradeoffs 

and by building interoperable, resilient systems, agricultural. 
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